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EXPERIMENTAL INVESTIGATIONS OF THE ACOUSTIC REFLECTION

COEFFICIENT OF DISCONTINUOUS CHANGES OF CROSS SECTION

IN TUBES WITH AIR FLOW

D. Ronneberger

ABSTRACT. The air flow in the region of a change
of cross section is quasi-stationary at low frequencies.
In this case the influence of flow velocity on the
reflection coefficient of this change in cross section
can be explained by the differential flow resistance.
The change of the reflection coefficient is calculated
in the same manner as Powell treated continuous
changes of the cross section.

With increasing frequency, the influence of the
pressure gradient behind the change of cross section
on the reflection coefficient becomes less and less
important. It is demonstrated for the example of an
expansion of the cross section that at high frequencies
annular vortices are separated from the cross-sectional
jump in synchronism with the sound signal. These
vortices produce an alternating pressure which affects
the impedance of the cross-sectional jump and hence
its coefficient of reflection.

1. INTRODUCTION

The reflection factor of cross section changes in

tubes with flow depends on the flow velocity [1, 2, 3,J.

There, as in this work also, the reflection factor of

the plane ground mode is considered, at frequencies for

which only this mode is capable of propagation. For

continuous changes of cross section, in which the flow can

be considered loss-free, Powell [2J has stated the dependence,
of the reflection factor on the flow velocity. He considered

essentially the fact that the gradient of the static pressure

at the cross section change is varied by the sonic wave, so·

*Numbers in the margin indicate pagination in the original foreign
text.

1



that it acts as an acoustic flow resistance. In [3J, satisfactory

agreement was found between this calculation and the measurement.

By means of this method, with which only the differential / 223

flow resi$tance is considered, the reflection factor of dis

continuous cross section changes can also be calculated with

flow superimposition. This, to be sure, is possible only at

frequencies with which the flow behaves in a quasi-stationary

manner. For low Mach numbers, i. e., imcompressible flow,

the portion of the impedance of discontinuous cross section

changes due to flow has already been determined in this way by

Lutz [lJ. The non-linear properties of apertures and Helmholtz
resonators were also explained by means of the differential flow

resistance [4, 5, 6J. In the first part of the present work,
this calculation is extended I to high subsonic flow velocities

and compared with measurement at a perforated plate.

With frequencies at which the flow can no longer be

considered as quasi-stationary in the region of the cross section
jump, the differential flow resistance can also no longer be

used for explanation of the change in the reflection factor

caused by the flow. It is the object of the second part of

this work to explore the mechanism of reflect10n factor change

which acts at high frequencies.

SYMBOL TABLE

a radius of the narrow tube

b radius of the wide tube

c adiabatic sonic velocity

f frequency

Pg total pressure

j imaginary unit

k wave number

M Mach number
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pressure
acoustic reflection factor

coordinate in the radial direction

cross section

time

flow velocity

coordinate in the axial direction

ratio of the phase velocity of the vortex wave and the

te~ velocity ~J
ratio of the specific heats

= (y - 1)/2
density of the medium

time-free phase

response time of the flow

rotational frequency

2. MEASURING SYSTEM

The reflection factor of the cross section changes was
determined by the method of Kundt. Essentially the same measuring
system as in [3J was used. The 2-meter long measuring tube with
an inside diameter of 85 mm is closed off at the end with a

diffusor having an almost reflection-free absorbent lining.
The remaining reflection is compensated with a ioudsp-eak~,r-'1

which radiates laterally into the tube at the inlet of the

diffusor. Absence of standing waves at the end is the criterion

for freedom from reflections. The test object is placed in the

middle of the tube section. The apparatus can be operated in

the frequency range from 0.3 kHz to 1.5 kHz.

A pressure chamber loudspeaker with about 50 W electrical

input power placed laterally at the inlet of the measuring tube

serves as the sound transmitter. In this way, sound levels of

about 130 dB are attained in the tube. The standing wave field

is explored with a probe microphone. The microphone is a

condensor microphone which, because of its wide linearity



range, is insensitive to large changes of the static pressure

with time.

The air, which is maintained at room temperature, is

blown into the measuring tube through an inlet jet with a cross
section ratio of 25:1 at the sound source end. The inlet jet

serves simultaneously for measurement of the dynamic pressure.

Flow velocities of up to 150 mls are attained. This corresponds

to a Mach number of 0.A5. The cross section changes are

produced by sliding appropriate bushings into the measuring

tube. With the narrow cross section, the maximum Mach number

attainable is 0.6 to 0.7.

The output voltage of the microphone passes a narrow

band filter (10 Hz bandwidth) and is recorded on a recorder

along with location marks, so that one can read from the

charts the amount and phase of the reflection factor. The

sonic pressure can also be recorded in the complex plane.
In the tube with flow, the two sonic waves moving in opposite

directions have different phase velocities. (According to [7J
lc.l/i-c;=v; i= II, 2" wliere(C~i listh~ ph~se velocity ~_ith fl;w \

superimposition, c is the sonic velocity with no 'flow,
and v is the flow velocity averaged over the cross section

of the tube.) The result is a frequency-independent phase

shift in the standing wave proportional to the Mach number

M = vic [3J. This fact was used for direct determination
of the Mach number from the recording of the sonic pressure

in the complex plane.

3. REFLECTION FACTOR OF CROSS SECTION JUMPS AT LOW FREQUENCIES

3.1 Calculation

Powell [2J in his theory on the calculation of the

reflection and transmission factors for a continuous cross

section change in a tube with flow proceeds from the assumption

that the flow parameters of pressure, density and velocity are
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constant over the cross, section, and that the flow is loss-free.

The incident sonic wave allows the flow parameter behind the

cross section change to fluctuate about a prescribed mean value.

Let the amplitude of pressure fluctuation b~J Pit. Then the

amplitudes of density and velocity fluctuations are ~ 1-'/;\
C/,

and
1 - \

'flu \ ,
,I}I. CI, )

with ,e~1 and cb being the dens ity and sonic

velocity behind the cross section change. If the transition

length of the cross section change is small in relation to the

wavelength, then one can consider the flow in the transition

region as quasi-stationary. That is, the fluctuation amplitudes
for the pressure, density and velocity ahead of the cross section

change, ji",Q'",ii,,! depend only on p-ul and the cross section ratio

11 J (11 I= Sa/Sb; Sa and Sb are the cross sections before and
after the cross section change). Because of the isentropy of

the flow, we have automatically Oa= ~~2-P,,\. Then the reflection -/

factor can be determined from 'fa/Va\, the impedance of the
cross section change.

With discontinuous changes in the cross section, there

appear large flow losses because the flow breaks away at the

edge of the cross section change, forming a jet surrounded

by highly turbulent air, in the midst of stationary air.
. ,

The energy in the vortices is converted into heat and removed

with the flow. As the path length increases, the jet expands

and finally takes up the entire cross section available. The

static pressure increases along this expansion section. If

one suddenly changes the flow velocity at the cross section
jump, then there is a certain time until the flow has
adjusted to the new equilibrium conditions and, thus, until

the static pressure ahead of the expansion section has attained

its new value. This response time is of the same order of
magnitude as the time needed for an air particle to flow

through the expansion section.



For very low frequencies, with which the period is large

in relation to this r€sponse time, one can calculate the

reflection factor for a discontinuous cross section change by

the same method that Powell used for continuous cross section

changes. As the flow is not loss-free in this case, one must

also apply an entropy wave which is produced in the expansion

section and flows downstream at .the flow velocity. It provides

that ~It~~.\ Pa-j ahead of the cross section jump, while the
eft

corresponding quantity after the cross section jump need not
I

be considered. Only density and temperature fluctuations appear

in the entropy wave, and no pressure or velocity fluctuations.
The details of this calculation are shown in the appendix.

3.2 Measurements at a perforated plate

In order to test this calculation experimentally with

the available measuring system having a lower frequency limit
.'
at 0.3 kHz, it was necessary to measure an object for which

the flow response time is as mUCIT smaller than 1 ms as possible.

This can be done, with the given transverse dimensions for the

measuring tube, only with a perforated plate. The plate used

in these measurements has 54 holes of 8 mm diameter, distributed

evenly across the cross section. The ratio n] of hole area to the
total cross sectional area is 0.48.

The course of the static pressure along the axis of the

tube was meas~red with the microphone probe, which was

connected to a U-tube manometer. The probe consisted of a tube

5 meters long (6 mm outside diameter, 1 mm wall thickness)

having eight 0.8 mm holes distributed evenly around the circum-

ference at the middle. It was placed at the axis of the 2-meter / 225
long measuring tube and held by two supports at the front and

back of the measuring tube. Figure 1 shows the curve for the

static pressure near the aperture plate. At the pressure

minimum, A, the air jets which leave the holes and constrict



still more reach their narrowest cross section. The expansion

section which follows is then clearly divided into two regions,

AB and Be, with very different pressure gradients. The

response time TBJfor the flow up to point B is considera?ly

shorter than the time T c\ _?~~eded for the flow at poin~~__!~ J
adjust to the velocity changes at the plate. Thus, the pressure

i
85mm

---:--,---1_..,...---_L

~
Jpo

. 0,~01

; I ~CL

t~~~' --- ~ n'~'
-0,001

-0,002
A

Figure 1. Example of the course of the static pressure near
the perforated plate (PO is the external pressure).

difference /lpc\ will determine the reflection factor only at

very low frequencies, while at higher frequencies, where the
period is comparable to Tel blit- still large-incoiriparTson~

. ~ - -"T . "

1TB' 6P~ _wi_~i-b,e deci: i vel. \..
The

in Figure

numbers.

ahead of

reflection factor of the perforated plate is plotted

2 as a function of the frequency at different Mach

(The Mach number always refers to the tube section

the test object.) With stationary air, the reflection
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Figure 2. Reflection factor for the perforated plate as a function
of the frequency., with the Mach number as parameter.
The solid lines and the arrows at the flow super
imposition arise from the calculation.

is due to the resonating mass of the medium, and the reflection

factor increases linearly with the frequency. The plotted lines

are obtained by averaging the measurements. With stationary air,

the impedance is purely imaginary, within the limits of measuring

accuracy. With flow superimposition, the reflection factor,

in a broad frequency range, becomes independent of the frequency.
Only at low frequencies does it decrease a little with decreasing

frequency. The impedance is essentially real. It is determined

by the differential flow resistance, while the resonating mass

of the medium is to a certain extent blown away. Similar

results have previously been observed by Ingard [8J for the case

of large sonic amplitudes, and by Westervelt [9J as turbulence

in the resonating mass of the medium. McAuliffe [lOJ found the

same for resonators having flow through or laterally across

their openings.
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The solid lines at high frequencies in Figure 2 arise

from the calculation described above if we use "lIB \ -"--_l'~~J

arrows at f = 0 arise from use of :\l~C\. The dashed lines

are intended to indicate the transition between the two

frequency ranges. Agreement between calculation and experiment

is quite good. The frequency at which the reflection factor

curve bends downward should rise somewhat proportionally to

the flow velocity, as the response time for the flow is

inversely proportional to the flow velocity. The measuring

accuracy is not great enough to confirm this, but an increase
of this frequency with the Mach number can clearly be recognized.

4. REFLECTION FACTOR OF DISCONTINUOUS CROSS SECTION

EXPANSIONS AT HIGH FREQUENCIES

4.1 Measurement

Now the question arises of how the reflection factor
of discontinuous cross section changes is affected by the flow

if the frequency of the incident sonic wave is comparable to

or greater than the reciprocal response time of the flow.

The pressure gradient behind the cross section jump should

then no longer have any noteworthy effect on the impedance

of the cross section change. For the example of cross section

expansions, this would mean that the reflection factor becomes

independert of the flow velocity at high frequencies, if
no new mechanism comes into force to change the reflection

factor at flow superimposition.

Of the discontinuous cross section changes, expansion

is most simply surveyed. Up to the cross section jump, the

flow parameters are independent of the path le~gth of the flow,

if we ignore the pressure gradients caused by the tube frictional
resistance. Behind the expansion there forms at first a jet / 226

of constant cross section (there are no pressure gradients

from constriction, as in the example with the aperture) which

finally expands to the cross section of the wide tube.

9



Acoustically, the cross section expansion has the advantage,

in respect to the aperture, that the resonating mass of the

medium is of secondary importance [llJ, so that the reflection

factor for calm air arises simply from the cross section ratio.

For this purpose, five discontinuous cross section

expansions with different cross section ratios (see Table I)

were measured. Figure 3, next, shows an example for the

TABLE I

THE CROSS SECTION EXPANSIONS USED

Cross section ratio

~
n]

0-.42 0.50 0.59 0.68 0.78

Length of expansion section

Jet diameter 4.2 3.3 2. 5 1.7 1.1

-50

M-0,36

. J

expans-ibn" sectI'onl
50cm -:\:

,!=O,50

Figure 3.

10

Course of the static pressure in a tube with flow
having an expansion of the cross section.



course of the static pressure along the tube axis (_nJ= 0.50).
The pressure difference f),P\ agrees very well with the calculation

(Carnot impact loss, e. g., [12J). The length of the expansion
section can likewise be determined from this diagram. If one

defines it in the way given there (the dashed line is the tangent

through the point of inflection) it is 20 cm long in this case,
and independent of the Mach number M. The corresponding lengths,

in jet diameters, for the other cross section ratios are shown

in Table I. (For the high Reynolds numbers of 105 - 106 which

appear here, these values depend only slightly on the Reynolds

number.

From the 20 cm length

of the expansion section,

there arises a reciprocal
response time of some 170 s-l

at M = 0.1, and 1000 s-l

at M = 0.6. Accordingly,
the pressure gradient should

affect the acoustic

reflection factor in all

cases at high flow

velocities and low

frequencies.

Figure 4 shows the

reflection factor for this

discontinuous cross section

expansion Cn- 1= 0.50) at
various Mach numbers, as a

function of the frequency.

Each point plotted is the
mean of three measurements

at contiguous'frequencies.

For-ease of viewing, the

f - -'-

Figure 4. Reflection factor of
a cross. section expansion in
a tube with flow as a function
of the frequency, with the
Mach number in the narrow tube
as the parameter. __.The _~,traight

lines arise from averaging thel
measurements, and the arrows~-'\
from calculations for low
frequencies.
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section ratios. The average

corresponds approximately to the

value measured at 0.9 kHz. For

comparison, the curves calculated

for low frequencies are plotted

with dashed lines.

0,60,4
M--

0,2
oL-__--L... .J...-__--1-._.....J I

o

0,8

0,6

slight frequency dependence of the reflection factor is

approximated here by straight lines. The measuring accuracy is

not sufficient for a more exact statement. The arrows at f = 0

arise from the calculation for low frequencies (Appendix). At

large Mach numbers, no transition can be detected,between these

calculated values and the measured ones. That means that even

at low frequencies and large Mach numbers the pressure gradient

behind the cross section jump has apparently no effect on the

reflection factor. (This is confirmed, moreover, by another

experiment described below). The agreement between calculation

(for low frequencies) and

measurement (at high frequencies)

at low Mach numbers is obviously

accidental, and does not mean

that there the mechanism of the

differential flow resistance / 227

is also decisive at high frequen
cies. This agreement is also
present with all the cross section
expansions measured here, as

can be seen in Figure 5. There
the reflection factor, because

of its slight dependence on

frequency, is averaged over all

frequencies (0.3 kHz to 1.5 kHz)
and plotted as a function of the

Mach number for the various cross

Figure 5. Reflection factor of
discontinuous cross section
expansions as a function of the
Mach number. The cross section
ratio is the parameter.
(f = 0.9 kHz). The dashed
curves arise from calculation
for low frequencies.
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The phase of the reflection factor is not measurably affected by

~he flow superimposition. With calm air, the resonating mass of the

medium is slightly noticeable Clfl<plJl"xll_~__ O-=-3) but themeasuriE:J~ ~J

accuracy with superimposition is not high enough so that one can

follow the change of the resonating mass of the medium. (In the

phase measurement, the pressure gradient in the measuring section
caused by the tube friction has a distinctly disturbing effect,

as the density and velocity change along with the pressure,

so that the internodal distance which depends on the velocity

changes along the path length.) If there were an effect of

the pressure gradients on the reflection factor, it should

result in a strong dependence of phase on frequency, as the

center of g~avi~rIDf the pressure gradient section does not
coincide with the cross section jump.

4.2 Directed jet

The following experiment provides a further proof that
the pressure gradient behind the cross section jump does not

contribute to the reflection factor of the cross sectional

expansion at high frequencies. Here the narrow tube was

extended into the wide tube by a 10 cm long tube of copper

gauze. In this way, the air jet is directed for a distance

yet, ~nd t~e expansion of the jet, with the related pressure

increase, first takes place after the gauze tube. Also, the

flow losses become somewhat great~r, so that the pressure

increase is about 15% smaller than with the- cross section
expansion without the gauze tube.

Figure 6 shows the reflection factor for this arrangement

as a function of the frequency for calm air and for flow

superimposition (M = 0.3). The 'corresponding measurements for

the same cross section expansion without the gauze tube are

plotted for comparison. As expected, for calm air the gauze

tube has no effect on the reflection factor, while with

flow superimposition it produces a fluctuation of the reflection

13



factor which is periodic / 228

with the frequency. To be

sure, the fluctuation is

around the value Which one

obtains for the undisturbed

cross sectional jump. With
flow superimposition,

therefore, the reflected wave

is composed of two parts which

interfere with each other.

From the phase of the

reflection factor we can

derive the fact that one

the greater - part is
due to the cross section jump.

This portion is equal to the
wave reflected at the undisturb

ed cross section jump.

The reflection at the cross

,

J

0,5

'L- O,4~

M~ M~-=- --...-'

Figure 6. Reflection factor of
the cross section expansion
with flow, with and without
the added gauze tube, as a
function of the frequency.
The same for calm air, for
comparison.

section jump, therefore, is

not changed either by the

addition of the gauze tube

or by the displacement and

diminution of the pressure increase. Thus, it is independent

of the pressure gradient. In this relation it is worth mentioning

that the nature of the edge also has no noteworthy effect.

Thus, rounding off of the edge (1.5 mm radius of curvature)

produced only a slight increase in the reflection factor,

which can be ascribed to the fact that the flow follows the

curvature a little before it separates.

o

0,51-----+
1
-,----+----

Jo ' .1• I

),+0 OOOOltO~OOO~ :

0,41-'-'-----"--"_°p+~'-"L

0

-":_:j.'., 'i -l
1,0 1,5 kHz

(-

O,?I-----r-----r-·-'

f\ t~

0,61------+----JL ~---c.;.---,
" .

The second, smaller portion of the reflected wave apparently

comes from the end of the gauze tube. One arrives at this

result by varying the Mach number and observing the frequency

separations of the reflection factor minima or maxima,

14



respectively. Assuming that a perturbation of the flow is ,

produced at the cross section jump synchronously with the sonic

signal, and that it moves downstream with 0.6 times the jet
velocity, producing a pressure disturbance at the end of the

gauze tube, which on its part moves upstream at sonic velocity

and interferes with the wave reflected at the cross sectional

jump, one obtains very good agreement between the measured and
calculated frequency separations.

Now it will appear in the following that this flow perturb

ation is not only responsible for the sonic wave produced at the

end of the gauze tube, but also for the change of the reflection

at the cross sectional jump.

-100 -80 -60 -40 -20 0 20 40 60cm
11l1l11l1l1111d1l11l111111l1lllll.llIlIllIllhllllllllllllllllttllllllillllllllllll"'flil

I x_

:l!'~-
------- HQ 03 .--_. j~,=====--

(-1,5kHz --~_ .. ---:,-~'l-...:..O.4_2, _
.---_...---

(a)

'"----',
t II

I , .... ,

d!HPi

Figure 7. (a) Curve for the alternating pressure in a tube with
flow, having an expansion in the cross section. (b) The same
in the vicinity of the cross sectional expansion, shown in the
complex plane.'

4.3 Vortex wave

The flow perturbation produced at the cross sectional jump

synchronously with the sound signal is already present at the

cross sectional expansion without the gauze tube. Figure 7(a)

shows the recording of the changing pressure amplitude along the

15



tube axis. The waviness behind the cross section jump is striking.

Figure 7 shows how this arises. There the changing pressure curve

behind the cross section jump is recorded in the complex plane,

with the path length as the parameter. The dashed circle would

appear if a simple sonic wave ran downstream. Obviously there is

superimposed on it another wave which also runs in the positive

x-direction, but which has a much higher wave number and thus

a much smaller phase velocity than the sonic wave: it is equal

to 0.6 times the jet velocity. Let this wave be designated as
~-- - _._-- - ~ -_.- - --- ------ - ----_. -~-- - -

the vortex wave, because it will appear that it consists of a

series of periodically detached infinitesimal ring vortices.

(B1okhintsev [13J calls : the phenomenon of a resting observer

measuring an alternating pressure if a vortex wave passes him

'pseudosound').

The phase velocity of the vortex wave can be determined

from the distances between the interference minima. Here it

is assumed that the phase velocity of the sonic wave is also

made up additive1y of the sonic velocity and of the flow velocity

averaged over the cross section of the tube. It appears that

the phase velocity of the vortex wave increases strongly with

the path distance, and the more strongly the greater the area ,/ 229
- - - - - - - -

ratio n. The phase velocity of the-vortex wave at the cross section

jump is decisive for its effect on the reflection factor. This

is obtained by extrapolation. It is independent of the Mach

number and of the frequency. For the ratio ~O of this
extrapolated phase velocity to the 3et--v.ef6cltYwe-:--obta-in~
S;~~l,n.\

In Figure 8, the varying pressure behind'the cross section

jump is plotted at the tube axis, within the jet region (solid

curve) and also at the tube wall outside the jet (dashed line)

as a function of the path distance (linear scale). The alter

nating pressure of the vortex wave has almost identical phase
I

across the tube cross section.

16



M-O,L -=, -- ~-0,4L;f-1,L,Hl

1\.
II
I,, .
I I
I I,

°0~--~10----L'-0-.-m---'30.-
Figure 8. Course of the
varying pressure (a) and
the varying total pressure
(b) in the jet axis (----)
and at the edge o~ the _' '
tube ( - - - ). 1\. and p~o\
are the corresponding
quantities for the sound wave.

From the momentum equation

for the flow, assumed to be

frictionless,

Dv· ( )
{j -Dl +grad p = 0 1

( pJ = medium density; Dv /Dt

= hydrodynamic derivative with

respect to time; p = pressure)

the speed distribution in the

vortex wave can be derived.

For this we make in addition

the simplified assumption

that the profile of the
velocity is rectangular. That

is, that the velocity is

v = Mc across the entire

cross section of the jet,
and zero outside it. Then

for the velocity component

in the axial direction, v x '
in the jet region after

linearization, we have

and outside this region
.. 8p \(' V.r.'- '"' ,0 .

ox

(2a)

(2b)

Here the varying component of p is still a function of the

radius, but that is of no importance for this consideration.

Now if we introduce the fact that the varying quantities

depend on time and place according to the wave factor
Lj till ~ - lew .r):! rw-;'1rotatiori-aTtrequency, k w- ';-wave number'----l

of the vortex waves') '\ we obtain ' '

(3a)

17



in the jet region and

- - hw
VWx = Pw

J] ,fj)

JIll' 1 1
'~'C ill/I' (3b)

outside.

and axial
the phase

Here Pw\ and
velocity ,in

velocity to

'/I WX \ are the varying amplitudes of pressure

the vortex wave, and ~ is the ratio of

the~~Lvel()c_it]'.~ \'

Because ~ is always less than 1, the pressure and
velocity are of opposite phase in the jet region and of the

same phase outside. The phase opposition in the jet region
can be confirmed by measuring the alternating component of

the total pressure Pg there with a microphone having its
sound pickup opening at the stagnation point. (Probe microphone

with a probe open at the front. As the probe diameter is small

in comparison to the vortex wavelength, we can neglect the

non-steady term in the Bernoulli equation which corresponds

to the oscillating mass of the medium ahead of the probe

opening.) For the case of small Mach numbers, and using

Equation (3a), we obtain for the varying total pressure of

the vortex wave in the 'jet region

I"~C) +

, fJ
-- /'1\' - - •

1-- fJ

(4)

Thus, the varying components of the static and total pressure

there are in phase opposition, while of course li;.:w-ii\\1

outside the jet. Figure 8b shows this, where the curves for

the varying total pressure inside (solid line) and outside

(dashed line) the jet are plotted, in comparison with Figure 8a.

/ 230
According to these deliberations, one can conceive of the

vortex wave rather as a periodic sequence of infinitesimal

ring vortices with alternating directions of rotation, which

are superimposed upon the steady flow and which are detached at
the cross section jump synchronously with the sound signal.
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The vortex wave is next strengthened along its path until it

comes to the region where the jet begins to expand, so that

it no longer encounters suitable expansion conditions. The

vortex wave can be observed even far behind the cross sectional

jump, especially with large cross sectional ratios,~~_~~ih~ __1

which the expansion section is rather short. Apparently the

velocity profile of turbulent tube flow is a sufficient expansion

condition for a vortex wave excited at a relatively small step

in the cross section.

4.4 Effect of the vortex wave on the reflection factor

Now the following hypothesis for the mechanism of the

reflection change at a discontinuous cross section expansion

by superimposition of a flow at high frequencies arises:

The air jet at the cross section mump is modulated by

the speed of sound; thus, a vortex wave is produced, having
a speed in the jet region which is of the same phase as the

sonic wave. The oppositely phased varying pressure of the
vortex wave is subtracted from the sonic pressure (in Figure

Sa there is a minimum in the total varying pressure at x = 0).

In this way the impedance of the cross section expansion is also

diminished. As this impedance is already smaller than the wave

resistance without the presence of a vortex wave, the

contribution to the reflection factor increases with further

diminution. The amount by which the impedance of the 'cross section

jump pecreases depends on how strongly the vortex wave is

excited. The excitation factor arises from the boundary c·onditions.

In this respect, it is worth mentioning that to the boundary

condition which applies in calm air, i. e., the disappearance

of the axial component of speed for x = 0, a<lr~ (Figure 9)

[14, IlJ there is added another one. This is the disappearance
of the radial component of the speed for x = 0, r = a in a

wider tube. In calm air, the speed-flow lines neai- the walls',

follow ,the contours of the cross- sectional jump. (In the upper

19



Figure 9. On the boundary
conditions for the acoustic
flow variation in the
vicinity of a cross section
expansi6n. ' ,

;, '
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part of Figure 9 this curve of
flow lines is drawn qualitatively.)

If the viscosity is neglected,

the speed at the edge even

becomes infinitely large.

With flow superimposition,
however, it must follow the

contours of the air jet

(Figure 9, lower part).

In order to meet the boundary

conditions exactly, one

naturally requires the higher

modes of sonic expansion and

probably also higher modes of

the vortex wave.

It still remains to be investigated whether this hypothesis

on the mechanism of the reflection change at high frequencies

agrees with the measurements: As the radial speed must vanish
at x = 0 and r = a (Figure 9), the flow field near the cross

section jump is not changed by addition of the gauze tube.

The gauze tube should also not notably disturb the excitation
of the vortex wave. The wave number of the vortex wave also

does not change, because the value ~O = 0.6 had appeared
for the cross section change without the added gauze tube, and
for the cross section expansion with the gauze tube we likewise

obtained the value of 0.6 for ~ from the frequency separations

of the reflection factor maxima. So it is no wonder that the

gauze tube does not affect the reflection factor at the cross

section jump.

If we assume that the structure of the vortex wave, i. e.,

its speed and pressure distribution across the tube cross section,

does not depend strongly upon the Mach number, as is suggested

by the fact that ~ is independent of the Mach number within the
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limits of measuring accuracy,then its excitation strength,

referred to the speed, should also not depend strongly on

the Mach number (the speed at the cross section jump is the
decisive quantity in the excitation of the vortex wave). Then,

according to Equation (3), the varying pressure of the vortex
wave is proportional to the Mach number and the impedance of the

cross section jump is a linear function of the Mach number.

As a first approximation, then, the reflection factor is also

linearly dependent on the Mach number. This agrees with the

measurement (Figure 5).

The phase of the reflection factor does not significantly / 231

dev~ate from 180°. If we ignore the higher modes which are

excited at the cross section jump but which are not capable of

propagation, therefore, the varying pressure at the cross

section jump should be about equal to the sonic pressure in the

minima of the standing wave in the narrow tube. But at high

frequencies in particular, it is considerably greater than the
sonic pressure at the minima. The deviation, referred to the

varying pressure of the vortex wave at the cross section jump,

decreases with increasing vortex wavelength. This deviation

results from the fact that the varying pressure of the vortex

wave increases strongly in the radial direction, especially at

the cross section jump (Figure 8a) and that the sonic wave

reflected there to a certain extent averages the varying pressure

over the entire cross section of the narrow tube. Thus, it has

a higher amplitude than would correspond to the varying pressure
in the tube axis at the cross section jump. The varying pressure

changes especially strongly in the radial direction, ,of course,

if the vortex wave length is small in comparison to the tube

radius.

To confirm that, the varying pressure at the edge of the
jet was recorded as a function of the axial coordinate x at

various frequencies and Mach numbers. The result is summarized

in Figure 10. The Mach number increases to the right, and the

frequency increases upward. In the individual parts of the
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figure, the alternati~g

pressure at the edge of the jet

is represented by the solid

lines and that in the axis of

the jet by the dashed lines.

The dot-dash line always. shows

the sonic pressure of the

minima in the narrow tube.

From this figure we can
estimate that the average

alternating pressure at

x = 0 is approximately equal
to the sonic pressure at the

standing wave minima only

for large vortex wavelengths.
With decreasing vortex wave

length, however, it becomes

steadily more clearly recog
nizable that still another

mechanism participates in

the reflection change due to

flow superimposition. If its

wavelength is small in compar

ison to the diameter of the

narrow tube, the vortex wave

makes no contribution to the

reflected sound wave. Its

range of action, then, is

limited essentially to the

conditions are fulfilled only

\ ..,---,

M=0,2

Figure 10. Curve of the
alternating pressure in the
vicinity of the cross section
expansion with flow at the
edge of the jet (---) and in
the jet axis (---) for various
frequencies and Mach numbers.

edge of the jet. The boundary

by the sonic modes.

M= 0,1

4
~B
J.

·1

4

'iLt-

;2L'.
,1

0·· •

·1

The frequency range within which the vortex wave produces
the essential part of the flow-conditioned reflection factor

change of the discontinuous cross section expansion is

given by the conditions that the vortex wavelength must be
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smaller than or comparable to the length of the expansion section

behin~ the cross section jump and larger than or comparable with

the diameter of the narrow tube.

4.5 Opening, with flow, in ~ infinitely large wall

If we allow the cross section ratio _~J at th~ discontinuous
cross section expansion to approach zero, then in the limiting

case the narrow tube discharges into half-space, and one

obtains the opening with flow in an infinitely large wall.

(With this boundary transition,to be sure,', the requirement

that only the ground mode be capable of propagation even in

the "wide tube" is omitted.) This case has already been studied

in [7J. Here we wish to make a contribution to explaining the

measurements obtained there. Figure 11 shows once more the
reflection factor of an opening, with flow, in a wall as a

function of the frequency parameters lea (Ie = ,wlc \ = wavenumber,
2a = diameter of the opening) for various Mach numbers. At
the frequency of zero it has the value of 1, independent of

the Mach number. It becomes larger with increasing frequency,

reaching a ~aximum at a frequency which is about proportional

to the Mach number. At higher frequencies, then, we have

rp(kv., M) r1,(Iea, O)rn(M)/, where--r~--rs the ~~iie~tion=-f~c_t~ !~

and m(M) , is a functl~n dependihg only on M. At low Mach

numbers, we have m(M) ~\ 1 + -- 2M~ -,
/ 232
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Figure 11. Reflection factor
of the opening, with flow, in
an infinite wall as a funct-ion
of ka, with the Mach number
as parameter.

Here, too, the increase

in the reflection factor can

be traced back to the ex

citation of a vortex wave.

Figure 12 shows an example

for the course of the alter

nating pressure in the axial

direction of the tube, measur

ed at the edge of the tube or

jet, respectively, and shown

in the complex plane. The
vortex wave is very strongly
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Rep

developed in this case, so
that the sonic wave can be

neglected in comparison with

it, except in the vicinity

of the opening. The vortex

wave in the free jet agrees

in its essential properties

with the vortex wave in the

tube. In the jet region the

alternating pressure and the

alternating total pressure

are of opposite phase. The

amplitude of the alternating

pressure is greater at the

edge of the jet than in its

axis.

the
at the
shown in

M = 0.3,

Figure 12. Curve of
alternating pressure
edge of a free jet,
the complex plane.
f = 0.75 kHz.

For the frequency-Mach
number combination shown in

Figure 12, the reflection

factor of the opening has just

one maximum as a function of

the frequency. It appears that at this frequency - Mach number

combination the vortex wave is particularly strongly developed.

The vortex wave length is about equal to the diameter. ~ith

constant Mach number and decreasing frequency, the amplitude

of the vortex wave decreases in about the same amount as the
reflection factor approaches the value of 1, while the

amplitude curve along the flow path remains similar. Also with
increasing frequency, one finds a decrease of the vortex wave

amplitude, while the sonic ,wave behind the opening becomes

steadily stronger, and is finally dominant. Like the amplitude

of the vortex wave, ~ also depends on the frequency. At the

frequency at which the reflection factor has its maximum, ~

takes on its smallest value of 0.5 ... 0.6 (the value decreases

somewhat with increasing Mach number). At high and low frequencies

~ increases to about 0.8. These values apply directly behind
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the opening. With increasing flow path, ~ likewise increases.
;

The fact that the reflection factor has the value of 1 at

zero frequency, independent of the Mach number, can be explaineq

as follows. Here the impedance change due to the flow is given

by the differential flow resistance which vanishes at nJ= O.
With increasing frequency, a vortex wave forms, with simul

taneous increase in the reflection factor. Here there is a

noticeable difference from the cross section expansion in a tube,
where this increase of the reflection factor with frequency does

not appear at low frequencies. One possible explanation for it

is the fact that when n / is not too small, the vortex wave

fills the entire cross section of the wide tube, so that

the alternating pressure cannot expand transverse to the jet,

as with very small n !(especially with nj = 0). If the maximum
of the vortex wave excitation and so of the reflection factor

is exceeded and the vortex wavelength becomes small in relation

to the opening diameter, the effect of the vortex wave on the
reflection factor moves into the background as with the cross

section expansions.

Vortex detachment synchronized by sonic irradiation has

previously been studied by Wehrmann [15J on a laminar round

free jet. He measured the vortex wave with a hot wire

anemometer. The vortex wave also plays a decisive role

in relation to whistle tones in systems in which a laminar free

jet strikes an appropriate barrier [16, l7J. Among other things,

von Gierke [16J measured the wave length of the vortex wave

by means of two alternating pressure probes. He also found / 233

the vortex to be most distinct if the wave length was about

equal to the jet diameter. Chanaud and Powell [17J obtained
for the vortex wave in a laminar free jet (maximum Reynolds

number = 4,000) a decrease in the phase velocity with the flow

distance, in opposition to the observations made here on
turbulent jets.
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Some concluding comments on the acoustic energy which'

is stored in the vortex wave at the cross section jump: this

energy is converted to heat on the collapse of the vortex;

that is, in general, the excitation of the vortex wave represents

an acoustic loss mechanism if no more acoustic energy can be

regained from the amplified vortex wave after a certain path

distance than was needed for its excitation. Examples for

the recovery of acoustic energy are the experiment with the

gauze tube (Section 4.2), sound amplification in channels

which are covered with Helmholtz resonators at periodic

separations [18J and especially the self-excited whistling

of jet-barrier systems [16, l7J.

5. CONCLUDING REMARKS

For discontinuous cross section changes and for apertures
in a tube with flow, a formula has been derived with which one

can use \ the velocity-dependent drop of the static pressure at
these flow barriers to calculate th~ acousticrefl~ction factor at \

low frequencies. This calculation is an extension of Powell's

theory [2J for calculation of the reflection factors of continuous
cross section changes. The formula reproduces 'the measurements

correctly as long as the flow behaves as quasi-stationary in the

vicinity of the cross section jump, while at higher frequencies
a new mechanism determines the acoustic properties of the dis

continuous cross section change.

With the example of discontinuous cross section expansions

it is shown that we are dealing with excitation of a vortex wave

which consists of a periodic sequence of infinitesimal ring

vortices. These are detached from the edge'of the cross section

jump synchronously with the sonic signal. The vortex wave

is detectable through its alternating pressure, and can be

differentiated well from the sonic wave because of its quite

different phase velocity. The alternating pressure and speed

of the vortex wave have the same phase in the region of the air

jet which forms behind the cross section expansion. The vortex
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speed in the jet region and the sound speed are of the same phase

at the cross section jump, so that the alternating pressure of

the vortex wave is subtracted from the sonic pressure. In this

way the impedance of the cross section expansion is decreased.

This leads to increase of the reflection factor. For the case

of low Mach numbers (up to M = 0.2) the change in the reflection
factor is equally large at low and high frequencies. It also

appears that the vortex wave is no longer responsible for

the flow-produced reflection change at frequencies for which

its wave length is small in comparison to the diameter of the

narrow tube.

°I-----+---!---l---"""<:f'~---j

, j

0,5 ~----r--
, 'l.=O,2&

Figure 13. Reflection factor,
normalized to M = 0 for the
discontinuous cross section
expansion behind an aperture
as a function of the Mach number
for various cross section ratios.

The results found for cross section expansions can be applied

to the case in which a tube discharges in an infinitely large

wall. Application to apertures and discontinuous constrictions

in a tube, however, is\ not immediately p~ssible, as here there

appears a strong pressure gradient directly at the cross section

jump, because of the jet contraction. In addition, no vortex

wave is capable of propagation

at the cross section jump with

a constriction. Correspondingly,

it is only weakly developed
behind it. For the case of an

aperture, Figure 13 shows that

the reflection factor behaves

qualitatively differently than

for the cross section expansion .
!

For this, according to

Powell [2J, that portion of the

reflection factor which results
from the tube cross section

narrowing to the aperture

cross section was calculated.

Then, from the measured

reflection factor, one can

determine the reflection

o
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factor of the following cross sectional expansion. It is

plotted in Figure 13 for three different apertures, as a

function of the Mach number in the aperture cross section, and

normalized to the corresponding value for calm air. It appears
that it drops sharply with increasing Mach number, in contrast

to the reflection factor of the normal discontinuous cross /234
section expansion.
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APPENDIX

Calculation of the reflection factor of discontinuous

cross section changes and apertures in a tube with flow at

low frequencies for the case in which the incident wave moves

in the direction of flow:

It is assumed that the flow parameters are constant across

the tube cross section. Also, the pressure drop at the cross

section change or aperture is considered to be only a .function

of the Mach number ahead of the cross section change or aperture,
respectively. Therefore, we neglect the effect of the Reynolds

number on the pressure drop, as we are dealing here with very

large Reynolds numbers. The medium is considered an ideal gas.
The symbols for the parameters ahead of or behind the cross

section jump are indexed with a or b, respectively.

The applicable equations are the continuity equation

(Al)
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the energy equation

(A2)

(A3)

and the momentum equation in the form

Pa P (Ma2) =Pb> I
in which P(Ma

2) must be measured. (p is the pressure,

p I the density, v the velocity, M2 = (v2 ,[!)/(rp) , 't1?-e_' __
square of the Mach number, y the ratio of the specific heats,

and n I the ratio of the cross sections ahead of and behind the

cross section jump.) p, ~I' and v are varied by the sound
wave. With the sound quantities designated by -],:and _w_~!h' -\
the quantities for the incident and reflected waves indexed
with 1 or 2, respectively, we obtain for superimposition

of a sound wave in the direction of flow

Prj~ p" +,1\ -:. 7" fll! ~;- JiiJ '-I- jil,

'[!"~[?Il+ (l/c}) (PI + 02) 0",~ ~,,+ (J/CI,2) (/);. 
Va~ v" + (l/ell ca ) (PI +1\) . " -- V" + (1/'.'1, Ct,) !~

(A4)

Here (1/cb2 )-a\ is ,the densi fYlampli tude c5~ the entropy wave

(see Section 3.1) and c is the speed of sound. If we insert

Equation (A4) into Equations ,(AL), (A2), and (A3), eliminating

the constant quantities, then after linearization we obtain

//(/)1 (l -10 ,11,,) - .IJI - !11,,) j'(c,,/cll ) =- I
= 7)b(! -rM/i) + a 111"

'[1\ (l-i- Ma) +';;2 (] -lila) j C!d'!:a) =

=Pb(l+,Hb) - -! -0
r-I

(AS)

(A6)
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1
(M,,!y)P'Cp 1 (2- (y-1)1I1,,)- \
-r,~(::, r Iy--])Ma)) + P(Pl+P2)=Pb

Here P' =~P(~t,,:l.:\ and dM,,2 = M,,2 (~lv,,_ + _d1?a _ elp" \1
d(M}) Va - '1?a PI: r~1

(A7)

The reflection ;factor is given by I"p'= p~I1~,1 ,
set Jl1b(.1?b!(!a)'=17~~,,(c,JCf,)I., we obt~~~

and if we

From Equations (AI), (A2) and (A3) we obtain

1 (V 31 2 2 1 + ~1:'-2- )Jl1 2- -- 1+4-v17 M --'---1
• b - 2 {}. a p2 '

in which {}= (y -1)/2(. FOT aiT, {}\ =0.2. FOT the case-1

in which 4172Ma2 l+M/' ~ i the-n.""jp2 .~ I'

(AS)

(A9)

(AIO)

For an aperture, ~I is to be set equal to 1. For the

case of incompressible flow, in which p = 1, Mb'~'li'; ,H Jl,\
Equation (AS) simplifies to

30

[17-(211I,iy)P')-1 I
r" - [1j- (2 Mll!y)P') +1 'I

I

(All)



If We also consider that in this case ..-(2Ma/Y)PI.Qc\is exactly the

differential flow resistanced(0.[)/dva\ (0.\ p is the pressure drop

at the cross section jump), then we see from Equation (All)

that the impeqance of the cross section jump with flow arises

as the sum of the impedance of the cross section jump with

calm air, ?Ji(JC\ and the differential flow resistance [IJ.

If we deal with a cross section expansion '~~_~__ lJ.,_.!.J::.~~r
P can be calculated from the momentum equation (e. g., [12J).
Then Equation (A3) becomes

(A3a)

Then, along with Equations (AI), (A2) and (A4), we obtain

(1 +1I1a) .!!.!'-. [_!._- (1 +Ah) +Mb2+ (S!..\)2 1I1a1- (2-
1

+Mb)(2 +2Ma+ Ma2)
_ Ca 'I' - 1 Cb 'Y - 17.1 ;"T,}- -____ . . ~_"-.,._ .. "_ .•

, (I-MaY !!J!..l-..:!- (1 +Mb) +Mb2- (S!..)2 Ma ] + (__ l __ +Mb) (2 -.li.ta+ Ma2) (ABa)
Ca r- 1 Cb I' - 1 17 il I

iL

(AlOa)

in which we obtain the value for vb/va from the expression

given in [12J

- -

VIi/Va = 17[1 + (1/2) (1-17) (1'-1-17(1'+ I»Ma2

(I-1J(Y-1J(y+I» Mi)]

if we expand the root according to M 2 and terminate after thea
third term.
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For incompressible flow, we obtain

[1J+Ma (1J-1)21J] -1 I
T

p = [1}+Ma (1]-1)21]] +1 '1
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